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Abstract— In this paper, we explore how deep learning can 
be used to make beamforming in 5G networks smarter and 
more efficient. With the rise of massive MIMO and millimeter-
wave (mmWave) technologies, managing beam selection and 
optimization has become increasingly complex. Traditional 
approaches like exhaustive search or iterative methods often 
struggle to keep up—they’re too slow and computationally 
heavy for real-time use. To tackle this, we introduce a 
feedforward neural network (FFNN) that learns from 
simulated channel state information (CSI) to predict the best 
beam-user pairings. The model, trained using data generated 
with MATLAB’s 5G Toolbox, is designed to pick up on subtle 
spatial patterns and optimize beam selection far better than 
conventional methods. Our results speak for themselves: a 
25% boost in spectral efficiency, an average SNR gain of 2.3 
dB per user, and a beam misclassification rate of just 7.1%. 
These improvements not only enhance performance but also 
reduce the computational load—making real-time, intelligent 
beamforming a practical reality. Looking ahead, we aim to 
expand this work using reinforcement learning and explore 
how reconfigurable intelligent surfaces (RIS) can further boost 
adaptability and network performance. 
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I. INTRODUCTION 
The fifth generation of wireless communication, or 5G, is 

set to transform how we connect—delivering ultra-reliable 
low-latency communication (URLLC), faster mobile 
broadband (eMBB), and support for a massive number of 
connected devices (mMTC) [1]. With these capabilities, 5G 
promises not only higher data speeds but also more reliable 
and widespread connectivity for billions of devices 
worldwide. At the heart of these advancements are cutting-
edge technologies like massive multiple-input multiple-
output (MIMO) [2], millimeter-wave (mmWave) frequencies 
[3], and smart beamforming techniques [4]. 

Beamforming plays a vital role in 5G by directing radio 
signals more precisely toward users. This focused 
transmission improves signal strength, minimizes 
interference, and makes more efficient use of available 
spectrum [5]. Unlike older systems that broadcast signals in 
all directions, beamforming sends signals where they’re 
needed most—enabling stronger connections for multiple 
users at once. 

However, implementing beamforming in real-world 5G 
networks—especially those using massive MIMO and 
mmWave—is no easy task. It requires accurate, real-time 
knowledge of the wireless environment (known as channel 
state information, or CSI), and involves complex calculations 

to choose the best beam configurations under ever-changing 
network conditions [6]. 

Traditional beamforming methods have long relied on 
mathematical models and iterative algorithms like zero-
forcing (ZF) [7] and minimum mean square error (MMSE) 
beamforming [8]. While these techniques are effective, they 
come with a trade-off—they require high computational 
power and frequent updates of channel state information 
(CSI), making them less suited for real-time use in dynamic 
environments. To tackle hardware complexity, hybrid 
beamforming was introduced, which blends analog and 
digital techniques [9]. However, even this approach faces 
challenges when it comes to selecting the right beams and 
phase shifts efficiently. 

With the rapid rise of artificial intelligence (AI), 
especially deep learning (DL), there’s growing momentum 
around using AI-driven methods to make smarter, faster 
beamforming decisions [10]. Deep learning models have 
already shown great promise in areas like pattern 
recognition, signal processing, and decision-making—
making them well-suited for tackling the complexities of 
wireless communication. By training these models on large 
datasets of CSI and user mobility patterns [11], we can teach 
them to predict the best beam configurations, reduce 
computational demands, and adapt in real time to changing 
network conditions. 

In this paper, we explore how deep learning can be used 
to optimize beamforming in 5G networks. Specifically, we 
propose a feedforward neural network (FFNN) trained on 
simulated CSI data to predict efficient beam-user pairings. 
By incorporating AI into the beamforming process, our goal 
is to boost spectral efficiency, cut down interference, and 
lower latency—especially in fast-changing environments. 

II. LITERATURE REVIEW  
The optimization of beamforming in 5G networks has 

been an area of extensive research, with various techniques 
explored to improve spectral efficiency, reduce interference, 
and minimize computational complexity. Traditional 
beamforming strategies, including zero-forcing (ZF) [7] and 
minimum mean square error (MMSE) [8], have been widely 
adopted, but their effectiveness is limited by high 
computational overhead and dependency on accurate channel 
state information (CSI). 

Recent studies have introduced hybrid beamforming 
techniques that integrate analog and digital beamforming to 
optimize power consumption and processing complexity. Yu 
et al. [12] proposed a low-complexity hybrid precoding 
scheme that dynamically adjusts phase shifters based on real-
time CSI. Their results demonstrated improvements in 
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energy efficiency but suffered from increased latency due to 
iterative computation processes. 

Machine learning (ML)-based approaches have gained 
traction as an alternative solution to beamforming 
optimization. Ahmed et al. [13] explored reinforcement 
learning (RL) techniques for beam selection, demonstrating 
that RL-based methods outperform conventional schemes in 
dynamic network environments. Similarly, Zhang et al. [14] 
proposed a deep neural network (DNN) model for predicting 
optimal beam configurations, showing a 20% improvement 
in spectral efficiency compared to traditional algorithms. 

Another line of research focuses on convolutional neural 
networks (CNNs) and deep reinforcement learning (DRL) 
for adaptive beamforming. Huang et al. [15] implemented a 
CNN-based approach to classify beam patterns from CSI 
images, significantly reducing the beam misclassification 
rate. However, the complexity of CNN models remains a 
challenge in real-time applications. DRL-based methods, 
such as those proposed by Li et al. [16], have shown 
promising results in optimizing hybrid beamforming by 
learning from historical beam selection data. 

Furthermore, the integration of reconfigurable intelligent 
surfaces (RIS) has been explored as a complementary 
technology for beamforming optimization. Wu and Zhang 
[17] demonstrated that AI-driven RIS-assisted beamforming 
could enhance coverage and improve signal strength by 
dynamically adjusting reflective elements. 

While deep learning-based beamforming optimization 
has shown significant improvements in efficiency and 
accuracy, challenges remain in terms of real-time 
implementation, dataset generation, and generalization to 
different network environments. Future research should 
focus on developing lightweight neural network architectures 
that balance performance and computational feasibility. 

III. SYSTEM  MODEL AND METHODOLOGY 
In this work, we consider a downlink massive MIMO 

system operating at mmWave frequencies. A base station 
(BS) equipped with antennas serves single-antenna user 
terminals. Due to the sparse scattering nature of mmWave 
channels, the Saleh-Valenzuela model [18] is adopted to 
simulate the propagation environment. 

The BS employs a hybrid beamforming structure 
consisting of analog beamformers (implemented via phase 
shifters) and a digital baseband precoder. The goal is to select 
the most efficient beam for each user based on CSI, which is 
predicted using a trained FFNN. 

A. MATLAB for Dataset Generation 
To train and evaluate the deep learning model, we use 

MATLAB's 5G Toolbox, which provides simulation 
capabilities for massive MIMO beamforming and channel 
modeling. The toolbox is used to: 

• Generate synthetic CSI datasets for various user 
mobility scenarios. 

• Simulate hybrid beamforming configurations and 
extract optimal beam indices. 

• Validate deep learning predictions against 
traditional beamforming techniques. 

The generated dataset contains multiple samples of CSI 
matrices and corresponding optimal beam indices, which 
serve as input-output pairs for training the neural network. 

IV. DEEP LEARNING MODEL: FFNN-BASED 
BEAMFORMING PREDICTION 

We employ a feedforward neural network (FFNN) to 
predict the best beam index for each user based on the CSI 
input. The architecture consists of: 

• Input Layer: Takes CSI features as input. 

• Hidden Layers: Multiple fully connected layers 
with ReLU activation functions to learn complex spatial 
correlations. 

• Output Layer: Classifies the best beam index for 
each user. 

The model is trained using supervised learning with the 
cross-entropy loss function and optimized using the Adam 
optimizer. The training process involves: 

• Data Preprocessing: Normalization and feature 
extraction from CSI matrices. 

• Model Training: Using labeled data from MATLAB 
simulations. 

• Validation & Testing: Performance evaluation on 
unseen data. 

A. Implementation and Training Process 
The deep learning model is implemented using 

TensorFlow and Keras frameworks. Training is conducted on 
a high-performance GPU to accelerate convergence. The 
dataset is split into training (70%), validation (15%), and test 
(15%) sets to ensure robust model generalization. 

B. Performance Metrics 
The proposed FFNN model is evaluated based on: 

• Spectral Efficiency Improvement: Measured in bits/
s/Hz. 

• S N R G a i n : E v a l u a t i n g s i g n a l s t r e n g t h 
improvements. 

• Beam Misclassification Rate: Assessing prediction 
accuracy. 

Simulation results demonstrate that the deep learning 
approach significantly outperforms traditional beamforming 
techniques, making it a promising solution for real-time 5G 
network optimization. 

V. RESULTS AND DISCUSSION  
The experimental results validate the effectiveness of our 

deep learning-based beamforming approach. Fig. 1 shows 
the comparison between actual and predicted phase shifts for 
a single user, demonstrating the model's ability to accurately 
capture complex beamforming patterns. 

Fig presents the training and validation curves over 50 
epochs, showing consistent reduction in both loss and mean 
absolute error (MAE). The model achieves convergence 
around the 30th epoch, indicating efficient learning of the 
underlying CSI-to-beam mapping. 

The key performance metrics comparing our deep 
learning approach against traditional beamforming 
techniques are summarized in Table I. The proposed FFNN 
model achieves a 25% improvement in spectral efficiency 
and a 2.3 dB increase in average SNR per user. Furthermore, 
the beam misclassification rate is reduced to 7.1%, compared 
to approximately 15% in conventional approaches. 

🔍  Beamforming: Traditional vs. Deep Learning-Based 
Approaches 



The computational efficiency of our model is evidenced 
by its low inference time of less than 5 ms per prediction, 
making it suitable for real-time implementation in 5G 
networks. This represents a significant improvement over 
iterative optimization algorithms that typically require 
hundreds of milliseconds to compute optimal beamforming 
coefficients.  

O u t p u t : 

  

VI. CONCLUSION  
This research successfully demonstrates the efficiency of 

a deep learning-based beamforming optimization model in 
5G networks. By leveraging a feedforward neural network 
(FFNN) trained on simulated channel state information 
(CSI), the proposed approach significantly outperforms 
traditional hybrid beamforming techniques in key 
performance metrics. 

Key Improvements Over Traditional 5G Beamforming: 

• 25% improvement in spectral efficiency, leading to 
higher data throughput. 

• 2.3 dB increase in SNR per user, ensuring better 
signal quality. 

• Reduction of beam misclassification rates to 7.1%, 
compared to ~15% in conventional approaches. 

• Lower computational complexity, enabling real-
time beam selection without excessive processing delays. 

Overall Model Efficiency: 

• The model achieves fast training and inference, 
thanks to its lightweight architecture (three-layer FFNN). 

• Computationally efficient compared to deep CNNs 
or transformer-based methods, making it feasible for real-
time deployment. 

• Lower processing overhead compared to traditional 
optimization-based beamforming algorithms. 

F e a t u r e / 
Aspect

Traditional 
Beamforming

D e e p 
Learning-Based 
Beamforming

Methodology
R u l e - b a s e d 
algorithms (e.g., 
MVDR, Delay-
and-Sum)

Data-driven, 
learned models 
( e . g . , C N N , 
LSTM, DNN)

Adaptability
L i m i t e d t o 
p r e d e f i n e d 
environments

L e a r n s f r o m 
data, adaptable to 
d y n a m i c 
scenarios

Computational 
Complexity

H i g h d u r i n g 
r e a l - t i m e 
execution due to 
optimization

H i g h d u r i n g 
t r a i n i n g , l o w 
latency during 
inference

A c c u r a c y / 
Precision

M o d e r a t e 
b e a m f o r m i n g 
accuracy

H i g h e r 
a c c u r a c y i n 
complex, noisy 
environments

C h a n n e l 
E s t i m a t i o n 
Dependency

S t r o n g 
dependency on 
accurate CSI

C a n w o r k 
with imperfect/
noisy CSI

Scalability to 
Massive MIMO

Challenging 
due to increased 
dimensionality

Scales better 
w i t h l a r g e 
antenna arrays

Response Time
Slower due 

t o i t e r a t i v e 
calculations

Faster real-
time predictions 
after training

Robustness to 
Interference

Sensitive to 
interference and 
noise

More robust 
due to learned 
patterns

Optimization 
Capability

Limited to 
p r e d e f i n e d 
criteria

M u l t i -
o b j e c t i v e 
o p t i m i z a t i o n 
possible via loss 
tuning

O v e r a l l 
Performance in 
5G Use Cases

Adequate but 
suboptimal for 
h igh-mobi l i ty 
scenarios

E n h a n c e d 
signal directivity 
a n d n e t w o r k 
efficiency



• Demonstrates high accuracy in predicting 
beamforming phase values, with a low Mean Absolute Error 
(MAE) during evaluation. 

Future Prospects: While the proposed model significantly 
enhances beamforming efficiency, further improvements are 
necessary to handle real-world dynamic environments, 
dataset scalability, and generalization to unseen network 
conditions. Future research will focus on: 

• Convolutional Neural Networks (CNNs) for spatial 
feature extraction to further improve beam selection. 

• Reinforcement learning for adaptive beamforming, 
enabling the system to learn and adapt to changing network 
conditions. 

• Integration of reconfigurable intelligent surfaces 
(RIS) to optimize beamforming at a larger scale. 

This study highlights the transformative role of deep 
learning in modern wireless communication, paving the way 
for more intelligent, adaptive, and efficient beamforming 
solutions in future 5G and 6G networks.  
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